openjmp

the data and code the behind the JMP WASH estimates

Linda Karani
Lars Schöbitz

March 10, 2023

openjmp - why?

WHO/UNICEF Joint Monitoring Programme (JMP)

  • JMP mandate: internationally-comparable information on WASH since 1990
  • JMP data input: raw database is updated every 2 years
  • JMP methods: linear regression model with Stata 14.0
  • JMP data output: 26 indicators for 232 countries, areas, and globally
  • JMP country files: compile raw data input and data output for 26 indicators in spreadhsheet-based proprietary software

Current JMP workflow

Goals of openjmp project

  • Document and publish R data package: jmpinput
  • Document and publish R software package: jmpmodel
  • Host half day online workshops to teach usage of developed packages in R
  • Publish lessons as Open Educational Resources

jmpinput

jmpinput R data package - benefits

  • Data accessible as a single table for any data analysis tool
  • Data can be imported to R using one command
  • Public website with detailed documentation _ e.g. washdata R Package https://katilingban.io/washdata/index.html

jmpinput R data package - benefits

  • Data accessible as a single table for any data analysis tool
  • Data can be imported to R using one command
  • Public website with detailed documentation _ e.g. washdata R Package https://katilingban.io/washdata/index.html

jmpinput - sanitation

  • Data in long format (19,528 rows)
  • 9 variables
iso3 source type year var_short var_long residence san_service_chain value
AFG MICS Survey 2003 s_imp_u Improved urban user interface 44.2
AFG NRVS Survey with microdata 2005 s_imp_u Improved urban user interface 62.3
AFG NVRA Survey with microdata 2008 s_imp_u Improved urban user interface 58.3
AFG MICS Survey with microdata 2011 s_imp_u Improved urban user interface 70.9

jmpinput - new variables

  • residence: urban/rural/national
  • san_service_chain: sanitation service chain
san_service_chain n
open defecation 2770
sharing 1553
user interface 12638
containment 195
emptying 1356
transport 10
FS treatment 85
WW treatment 921

jmpinput - use cases

  1. Using JMP methods to reproduce estimates and apply different models - Linda Karani - MSc Data Science
  2. Writing the jmpmodel R software package with a function to produce estimates (and a function to produce service ladder plots)

jmpinput - use cases

  1. Using JMP methods to reproduce estimates and apply different models - Linda Karani - MSc Data Science
  2. Writing the jmpmodel R software package with a function to produce estimates (and a function to produce service ladder plots)
estimate(iso3 = "AFG",           # default: all iso3 codes
         year = 2010:2030,       # Single year or range of years
         var_short = NULL,       # default: all variables (NULL)
         residence = "national") # default: national

jmpinput - use cases

  1. Using JMP methods to reproduce estimates and apply different models - Linda Karani - MSc Data Science
  2. Writing the jmpmodel R software package with a function to produce estimates (and a function to produce service ladder plots)
estimate(iso3 = "AFG",           # default: all iso3 codes
         year = 2010:2030,       # Single year or range of years
         var_short = NULL,       # default: all variables (NULL)
         residence = "national") # default: national
  1. Great potential for unforeseen use cases enabled by making the data readily accessible (research, teaching, joining with other data, etc.)

Number of data points for type of survey
type n
Survey with microdata 11149
Admin 3369
Survey 3124
Census 1732
Other 154

country n
Peru 412
Mexico 392
Colombia 364
Nigeria 332
Brazil 304
Costa Rica 302
South Africa 301
Japan 278
Uganda 265
Bolivia 256

country n
Peru 101
Colombia 96
Nigeria 80
Mexico 79
Ghana 62
Uganda 62
Costa Rica 56
Guatemala 56
South Africa 52
Bolivia 48

country n
Philippines 62
Nigeria 48
Bangladesh 40
Japan 40
South Korea 32
Ethiopia 20
Niger 20
Belarus 16
China 16
Congo - Kinshasa 16

country n
Chile 14
Hong Kong SAR China 10
South Korea 8
Macao SAR China 8
Mauritius 8
Norway 8
Hungary 6
Armenia 5
Belgium 5
Brazil 5

country n
South Korea 8
Lithuania 5
Norway 5
Japan 3
Poland 3
Bhutan 2
Austria 1
Finland 1
Iceland 1

openjmp - what’s next?

openjmp - what’s next

Thanks! 🌻

Thanks 🌻

This project was supported by the Open Research Data Program of the ETH Board.

The slides were created via revealjs and Quarto: https://quarto.org/docs/presentations/revealjs/

You can view source code of slides on GitHub

Or you can download slides in PDF format

This material is licensed under Creative Commons Attribution Share Alike 4.0 International.

References

“Urban Water and Sanitation Survey Dataset.” n.d. https://katilingban.io/washdata/index.html. Accessed March 9, 2023.
WHO/UNICEF Joint Programme for Water Supply, Sanitsation and Hygiene (JMP). 2018. JMP Methodology - 2017 Update & SDG Baselines,” March. https://doi.org/https://washdata.org/report/jmp-methodology-2017-update.